Estimation of Gas-Particle Partitioning Coefficients (Kp) of Carcinogenic Polycyclic Aromatic Hydrocarbons in Carbonaceous Aerosols Collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand
Share this post on: Twitter Facebook
To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days at three different atmospheric layers at the heart of Chiang-Mai, Bangkok and Hat-Yai from December 2006 to February 2007. A DRI Model 2001 Thermal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon (OC) and elemental carbon (EC) contents in PM10. Diurnal and vertical variability was also carefully investigated. In general, OC and EC mass concentration showed the highest values at the monitoring period of 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis at nighttime. Morning peaks of carbonaceous compounds were observed during the sampling period of 06:00-09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime particulate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifetime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approximately ten times higher than those air samples collected at Prince of Songkla University Hat-Yai campus corpse incinerator and fish-can manufacturing factory but only slightly higher than those of rice straw burning in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in PM10, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-particle partitioning of PAHs in Chiang-Mai, Bangkok and Hat-Yai.
Appear in Asian Pacific Journal of Cancer Prevention
Author: Pongpiachan S, Ho KF, Cao J.
How to cite this article:
Siwatt Pongpiachan , 2013. Estimation of Gas-Particle Partitioning Coefficients (Kp) of Carcinogenic Polycyclic Aromatic Hydrocarbons in Carbonaceous Aerosols Collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand, Asian Pac J Cancer Prev. 2013;14(4):2461-76.